
Application Note: Getting started with eRIC-SIGFOX

Suitable for: eRIC-SIGFOX radio module

Date: July 2017

Version: 1.1

Author: SG – LPRS

© Low Power Radio Solution Ltd 2017 Page 1 www.lprs.co.uk

http://www.lprs.co.uk/

Contents

Page

1. Purpose 3

2. Sigfox Network Overview 3

3. Requirements 3

4. Command Flow Diagram 4

5. Using Realterm software with eRIC-SIGFOX 5

6. Microchip PIC24HJ32GP302 MCU Code example of flowchart. 9

7. Using LPRS’s easyRadio Companion software to send data. 14

8. Conclusion 15

© Low Power Radio Solution Ltd 2017 Page 2 www.lprs.co.uk

http://www.lprs.co.uk/

1. Purpose

eRIC-SIGFOX is an easy to use, simple to control Sigfox AT Command modem module,
for allowing device to communicating with the Sigfox world wide radio network for
IoT / M2M devices.

This application note aims to help you quickly and easily connect to the Sigfox
network and send data.

2. Sigfox Network Overview

3. Requirements

- eRIC-SIGFOX Radio module (pre-provisioned with LPRS Sigfox Connectivity).

- eR-EVK-SIGFOX Eval Kit (or eRIC-DK board) & related antenna / USB cable.

- PC or MAC with 1 available USB connector.

- Serial terminal program such as Realterm (https://realterm.sourceforge.io/).

OK let’s begin…….please turn to page 3 to view the flow diagram which overviews
how to send messages to the Sigfox network.

© Low Power Radio Solution Ltd 2017 Page 3

Device based on
eRIC-SIGFOX Sigfox Network / Servers Customer Application

Server

API
callback

868MHz

Customer

www.lprs.co.uk

https://realterm.sourceforge.io/
http://www.lprs.co.uk/

START

Set uart to 9600 baudrate and 8N1.Send
{’A’,’T’,0x0D,0x0A} .0x0D and 0x0A are

return and new line characters.

If module
replies “OK”

YES

NO

END or GOTO START

Send {‘A’,’T’,’$’,’I’,’=’,’1’,’0’,0x0D,0x0A}. This should
return module ID of 8 bytes length. This command

can be ignored, if module ID is not required.

WAIT 100ms

Load message in a variable. For example:
char message =

{’T’,’E’,’S’,’T’,’M’,’E’,’S’,’S’,’A’,’G’,’E’};
Module can accept maximum of12Bytes

Send {‘A’,’T’,’$’,’S’,’F’,’=’,message,0x0D,0x0A}. This should
send message loaded in above step on to Sigfox network.

If module
replies “OK”

NOYES If module replies “ERROR” or if
there is no reply, then sending
message failed. Check module

or uart settings and restart.

Send same
message
again?

YES

END

NO

© Low Power Radio Solution Ltd 2017 Page 4

4. Command Flow diagram

www.lprs.co.uk

http://www.lprs.co.uk/

© Low Power Radio Solution Ltd 2017 Page 5

5. Using Realterm software with eRIC-SIGFOX

5.1 Open RealTerm and click Port Tab. Choose 9600 Baud with Parity None, 8 Data
bits, and 1 Stop bit. The Comm Port for the sigfox module connected in this
screenshot is 137. Click Open button.

5.2 Click Send tab. Type AT in the first text box with +CR and +LF ticked.

www.lprs.co.uk

http://www.lprs.co.uk/

© Low Power Radio Solution Ltd 2017 Page 6

5.3 Click Send ASCII button and wait for OK to be displayed on black screen.

5.4 If there is no OK displayed on black screen, check Baud setting, display

settings of Realterm. Check if Sigfox module Comm port is correctly selected.

Try again from start.

5.5 Clear first text box and type AT$I=10 with +CR and +LF ticked.

www.lprs.co.uk

http://www.lprs.co.uk/

© Low Power Radio Solution Ltd 2017 Page 7

5.6 Click Send ASCII button. The module ID should be displayed on black screen.

5.7 Clear first text box and type AT$SF=544553544D455353414745 with +CR and

+LF ticked. This is the command to send a message and the message

(TESTMESSAGE) here is shown as Hex value in ascii.

T = 0x54

E = 0x45

S = 0x53

T = 0x54

M = 0x4D

E = 0x45

S = 0x53

S = 0x53

A =0x41

G = 0x47

E = 0x45

www.lprs.co.uk

http://www.lprs.co.uk/

© Low Power Radio Solution Ltd 2017 Page 8

5.8 Click Send Ascii button and wait for OK to be displayed on black screen. It

will take 10-15 seconds to get reply OK, back from module. If the module replies

OK, that means the message has been delivered onto sigfox network.

5.9 If the module replies, ERROR: parse error, check if the message format is not

Hex. Or if the module replies ERR_SEND_FRAME_DATA_LENGTH, check if the

length of the message doesn’t exceed 12bytes.

5.10 If the sigfox module is licensed and registered on sigfox network, the

delivered messaged can be viewed on backend sigfox portal.

www.lprs.co.uk

http://www.lprs.co.uk/

© Low Power Radio Solution Ltd 2017 Page 9

6. Microchip PIC24HJ32GP302 MCU Code example of flowchart.

_FGS(GWRP_OFF&GCP_OFF);

_FOSCSEL(FNOSC_FRCPLL & IESO_ON); //8Mhz

_FOSC(POSCMD_NONE & OSCIOFNC_ON &IOL1WAY_OFF & FCKSM_CSECME);

_FWDT(WINDIS_OFF & FWDTEN_OFF); //watch dog timer off

_FICD(ICS_PGD3 & JTAGEN_OFF);

#define FOSC clock //8000000LL // clock-frequecy in Hz with suffix LL (64-bit-long), eg.

32000000LL for 32MHz

#define FCY (FOSC) // MCU is running at FCY MIPS

#define delay_us(x) __delay32(((x*FCY)/1000000L)) // delays x us

#define delay_ms(x) __delay32(((x*FCY)/1000L)) // delays x ms

#define delay_s(x) __delay32(((x*FCY)/1L)) // delays x s

const long BaudValues[] = {1200,2400,4800,9600,19200,38400,31250,76800,115200} ;

const int UxBRG_Values[] = {416,207,103,51,25,12,15,5,16}; //(8000000/(16*baudrate))-1

//;115200 also works in 8mhz ,just needs high baud rate select

//with forumal (8000000/(4*baudrate))-1 for 115200 at 8mhz

void Timer2_Init(); //V1.2

volatile unsigned long Uart_timeout;

volatile unsigned long Uart_WaitforData_Timeout;

int main(void)

{

_PLLPOST = 3; //to make 8Mhz

_PLLPRE = 1; //to make 8Mhz

_TUN = 10; //to make fine adjustments near to 8Mhz

while(OSCCONbits.LOCK!=1) {}; //Wait for Oscillator

_LPOSCEN = 0; //Disable secondary oscillator _which is on RA4 and RB4

www.lprs.co.uk

http://www.lprs.co.uk/

© Low Power Radio Solution Ltd 2017 Page 10

//SET 9600 Baud and 8N1 Uart

_U2RXR0 = 0; //RP2(00010) assigned to RPINR19 (U2RX)

_U2RXR1 = 1;

_U2RXR2 = 0;

_U2RXR3 = 0;

_U2RXR4 = 0;

_U2CTSR0 = 1; //RP3(00011) assigned to RPINR19 (U2CTS)

_U2CTSR1 = 1;

_U2CTSR2 = 0;

_U2CTSR3 = 0;

_U2CTSR4 = 0;

_RP1R0 = 1; //RP1 as U2TX output which it should be 00101 or

_RP1R = 5

_RP1R1 = 0;

_RP1R2 = 1;

_RP1R3 = 0;

_RP1R4 = 0;

_RP0R0 = 0; //RP0 as U2RTS which should be 00110 or _RP0R = 6

_RP0R1 = 1;

_RP0R2 = 1;

_RP0R3 = 0;

_RP0R4 = 0;

_UARTEN = 0; //UARTx is enabled; all UARTx pins are controlled by UARTx as

defined by UEN<1:0>

_UTXEN = 0; //Transmit is enabled, UxTX pin is controlled by UARTx

_USIDL = 0; //Continues module operation in Idle mode
_UEN1 = 0; //UxTX, UxRX, UxCTS and UxRTS pins are enabled and used
_UEN0 = 0; //UxTX, UxRX, UxCTS and UxRTS pins are enabled and used
_BRGH = 0; //BRG generates 16 clocks per bit period
_PDSEL0 = 0; //8-bit data, no parity
_PDSEL1 = 0; //8-bit data, no parity
_STSEL = 0; //One Stop bit
_RTSMD = 0;
_IREN = 0; //IRDA is dsabled

U1BRG = UxBRG_Values[0];

www.lprs.co.uk

http://www.lprs.co.uk/

© Low Power Radio Solution Ltd 2017 Page 11

_UTXISEL0 = 0; //Interrupt when a character is transferred to the Transmit Shift Register

(TSR) and as a result, the

//transmit buffer becomes empty

_UTXISEL1 = 1; //Interrupt when a character is transferred to the Transmit Shift

Register (TSR) and as a result, the

//transmit buffer becomes empty

_URXISEL0 = 0; //Interrupt is set when any character is received and transferred from

the RSR to the receive buffer;

//receive buffer has one or more characters

_URXISEL1 = 0; //Interrupt is set when any character is received and transferred from

the RSR to the receive buffer;

//receive buffer has one or more characters

_UARTEN = 1; //UARTx is enabled; all UARTx pins are controlled by UARTx as defined

by UEN<1:0>

_UTXEN = 1; //Transmit is enabled, UxTX pin is controlled by UARTx

//Send AT command
While(1)
{
char AT[] = {'A','T',0x0D,0x0A};
i=0;
while(i<4)
{

while(U2STAbits.UTXBF == 1);
U2TXREG = AT[i++]; //send one byte of data into Tx reg. Send AT\r to module to find

module
}

while(U2STAbits.TRMT == 0);//Transmission is in progress... wait

i=0;
Uart_WaitforData_Timeout = 0;

// _T2IE = 1;
while(!(U2STAbits.URXDA)) //wait for reply from module

{
if(Uart_WaitforData_Timeout>Uart_timeout)
break;

www.lprs.co.uk

http://www.lprs.co.uk/

© Low Power Radio Solution Ltd 2017 Page 12

}

i = 0;

while((U2STAbits.URXDA))

{

Data[i++] = U2RXREG;//Send received data to PC

Uart_WaitforData_Timeout = 0;

while(!(U2STAbits.URXDA))

{

if(Uart_WaitforData_Timeout>Uart_timeout)

break;

}

}

if(Data[0]== 'O' && Data[1]=='K')

{

Break; //It is Sigfox

}

}

Timer2_Stop();//V1.4

Timer2_Reset();//V1.4

//Send TESTMESSAGE every 15minutes

while(1)

{

char SigfoxCommand[] = {'A','T','$','S','F','='

,’5’,’4’,’4’,’5’,’5’,’3’,’5’,’4’,’4’,’D’,’4’,’5’,’5’,’3’,’5’,’3’,’4’,’1’,’4’,’7’,’4’,’5’};

j = 0;

while(j<28)

{

while(U2STAbits.UTXBF == 1);

U2TXREG = SigfoxCommand[j++]; //send received data from GPS into Module Tx reg

}

while(U2STAbits.UTXBF == 1);

U2TXREG = 0x0D;//Send cr lf

while(U2STAbits.UTXBF == 1);

U2TXREG = 0x0A;

while(U2STAbits.TRMT == 0);//Transmission is in progress... wait

delay_s(900);//900seconds delay or 15mins

}

}

www.lprs.co.uk

http://www.lprs.co.uk/

© Low Power Radio Solution Ltd 2017 Page 13

void Timer2_Init()

{

T2CONbits.TCKPS1 = 0;//1;

T2CONbits.TCKPS0 = 0;//Dont divide 8000000//1; //Divide by

256;8000000/256 = 31250

T2CONbits.TCS = 0; //Internal clock

PR2 = 1000; //1000cycles changed to 1000 from 100 in V1.4

Timer2_Reset();//TMR2 = 0;

Timer2_ClearFlag();//_T2IF = 0;

Timer2_Start();//T2CONbits.TON = 1;

Timer2_InterruptEnable();//_T2IE = 1;

}

void __attribute__((interrupt, auto_psv)) _T2Interrupt()

{

Timer2_ClearFlag();//THis needs to be here important

Uart_WaitforData_Timeout++; //For uart increment

}

********Code example finish*********

www.lprs.co.uk

http://www.lprs.co.uk/

© Low Power Radio Solution Ltd 2017 Page 14

7. Using LPRS’s easyRadio Companion software to send data.

7.1 Open latest easyRadio companion software and click Sigfox Icon.

7.2 Select port and click Open Port button.

www.lprs.co.uk

http://www.lprs.co.uk/

© Low Power Radio Solution Ltd 2017 Page 15

7.3 Click Refresh Module Status. Sigfox module details will be displayed.

7.4 Click communications tab. Clear first text box and type:

AT$SF=544553544D455353414745 with a space at the end.

Note: This message payload is 22bytes in ASCII and 11bytes in HEX….just fitting within

the 12byte maximum payload for Sigfox.

www.lprs.co.uk

http://www.lprs.co.uk/

© Low Power Radio Solution Ltd 2017 Page 16

7.5 Click Send 29BYTES button. After 10-15 seconds, the module will reply OK. The

sigfox message is delivered to sigfox network.

Note: 29BYTES is the size of issuing the whole AT command + payload to the eRIC

module in ASCII, the Sigfox payload is 11 bytes.

8. Conclusion

Congratulations, you have just sent some data using the Sigfox network, happy

developing!

If you have any questions or problems operating this demo / the module etc, please do

not hesitate to contact the LPRS team or your local distributor for assistance, we

welcome the opportunity to help.

www.lprs.co.uk

http://www.lprs.co.uk/

